"My agent understands me better": Integrating Dynamic Human-like Memory Recall and Consolidation in LLM-Based Agents
Auteurs : Yuki Hou, Haruki Tamoto, Homei Miyashita
Résumé : In this study, we propose a novel human-like memory architecture designed for enhancing the cognitive abilities of large language model based dialogue agents. Our proposed architecture enables agents to autonomously recall memories necessary for response generation, effectively addressing a limitation in the temporal cognition of LLMs. We adopt the human memory cue recall as a trigger for accurate and efficient memory recall. Moreover, we developed a mathematical model that dynamically quantifies memory consolidation, considering factors such as contextual relevance, elapsed time, and recall frequency. The agent stores memories retrieved from the user's interaction history in a database that encapsulates each memory's content and temporal context. Thus, this strategic storage allows agents to recall specific memories and understand their significance to the user in a temporal context, similar to how humans recognize and recall past experiences.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.