Learning S-Matrix Phases with Neural Operators
Auteurs : V. Niarchos, C. Papageorgakis
Résumé : We use Fourier Neural Operators (FNOs) to study the relation between the modulus and phase of amplitudes in $2\to 2$ elastic scattering at fixed energies. Unlike previous approaches, we do not employ the integral relation imposed by unitarity, but instead train FNOs to discover it from many samples of amplitudes with finite partial wave expansions. When trained only on true samples, the FNO correctly predicts (unique or ambiguous) phases of amplitudes with infinite partial wave expansions. When also trained on false samples, it can rate the quality of its prediction by producing a true/false classifying index. We observe that the value of this index is strongly correlated with the violation of the unitarity constraint for the predicted phase, and present examples where it delineates the boundary between allowed and disallowed profiles of the modulus. Our application of FNOs is unconventional: it involves a simultaneous regression-classification task and emphasizes the role of statistics in ensembles of NOs. We comment on the merits and limitations of the approach and its potential as a new methodology in Theoretical Physics.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.