Thermodynamic formalism of countably generated self-affine sets
Auteurs : Antti Käenmäki, Ian D. Morris
Résumé : In this article, we further develop the thermodynamic formalism of affine iterated function systems with countably many transformations by showing the existence and extending earlier characterisations of the equilibrium states of finite affine iterated function systems to the countably infinite case. As an application, under mild conditions, we prove that the affinity dimension of a countable affine iterated function system is equal to the supremum of the affinity dimensions of its finite subsystems. We deduce corollaries concerning the Hausdorff dimension of countably generated self-affine sets in dimensions $1$, $2$, and $3$ satisfying mild deterministic assumptions and in arbitrary dimension with generic translations.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.