RaBitQ: Quantizing High-Dimensional Vectors with a Theoretical Error Bound for Approximate Nearest Neighbor Search

Auteurs : Jianyang Gao, Cheng Long

The paper has been accepted by SIGMOD 2024
Licence : CC BY-NC-SA 4.0

Résumé : Searching for approximate nearest neighbors (ANN) in the high-dimensional Euclidean space is a pivotal problem. Recently, with the help of fast SIMD-based implementations, Product Quantization (PQ) and its variants can often efficiently and accurately estimate the distances between the vectors and have achieved great success in the in-memory ANN search. Despite their empirical success, we note that these methods do not have a theoretical error bound and are observed to fail disastrously on some real-world datasets. Motivated by this, we propose a new randomized quantization method named RaBitQ, which quantizes $D$-dimensional vectors into $D$-bit strings. RaBitQ guarantees a sharp theoretical error bound and provides good empirical accuracy at the same time. In addition, we introduce efficient implementations of RaBitQ, supporting to estimate the distances with bitwise operations or SIMD-based operations. Extensive experiments on real-world datasets confirm that (1) our method outperforms PQ and its variants in terms of accuracy-efficiency trade-off by a clear margin and (2) its empirical performance is well-aligned with our theoretical analysis.

Soumis à arXiv le 21 Mai. 2024

Explorez l'arbre d'article

Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel

Accédez également à nos Résumés, ou posez des questions sur cet article à notre Assistant IA.

Recherchez des articles similaires (en version bêta)

En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.