Magnetospheric origin of a fast radio burst constrained using scintillation
Auteurs : Kenzie Nimmo, Ziggy Pleunis, Paz Beniamini, Pawan Kumar, Adam E. Lanman, D. Z. Li, Robert Main, Mawson W. Sammons, Shion Andrew, Mohit Bhardwaj, Shami Chatterjee, Alice P. Curtin, Emmanuel Fonseca, B. M. Gaensler, Ronniy C. Joseph, Zarif Kader, Victoria M. Kaspi, Mattias Lazda, Calvin Leung, Kiyoshi W. Masui, Ryan Mckinven, Daniele Michilli, Ayush Pandhi, Aaron B. Pearlman, Masoud Rafiei-Ravandi, Ketan R. Sand, Kaitlyn Shin, Kendrick Smith, Ingrid H. Stairs
Résumé : Fast radio bursts (FRBs) are micro-to-millisecond duration radio transients that originate mostly from extragalactic distances. The emission mechanism responsible for these high luminosity, short duration transients remains debated. The models are broadly grouped into two classes: physical processes that occur within close proximity to a central engine; and central engines that release energy which moves to large radial distances and subsequently interacts with surrounding media producing radio waves. The expected emission region sizes are notably different between these two types of models. FRB emission size constraints can therefore be used to distinguish between these competing models and inform on the physics responsible. Here we present the measurement of two mutually coherent scintillation scales in the frequency spectrum of FRB 20221022A: one originating from a scattering screen located within the Milky Way, and the second originating from a scattering screen located within its host galaxy or local environment. We use the scattering media as an astrophysical lens to constrain the size of the lateral emission region, $R_{\star\mathrm{obs}} \lesssim 3\times10^{4}$ km. We find that this is inconsistent with the expected emission sizes for the large radial distance models, and is more naturally explained with an emission process that operates within or just beyond the magnetosphere of a central compact object. Recently, FRB 20221022A was found to exhibit an S-shaped polarisation angle swing, supporting a magnetospheric emission process. The scintillation results presented in this work independently support this conclusion, while highlighting scintillation as a useful tool in our understanding of FRB emission physics and progenitors.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.