QMViT: A Mushroom is worth 16x16 Words
Auteurs : Siddhant Dutta, Hemant Singh, Kalpita Shankhdhar, Sridhar Iyer
Résumé : Consuming poisonous mushrooms can have severe health consequences, even resulting in fatality and accurately distinguishing edible from toxic mushroom varieties remains a significant challenge in ensuring food safety. So, it's crucial to distinguish between edible and poisonous mushrooms within the existing species. This is essential due to the significant demand for mushrooms in people's daily meals and their potential contributions to medical science. This work presents a novel Quantum Vision Transformer architecture that leverages quantum computing to enhance mushroom classification performance. By implementing specialized quantum self-attention mechanisms using Variational Quantum Circuits, the proposed architecture achieved 92.33% and 99.24% accuracy based on their category and their edibility respectively. This demonstrates the success of the proposed architecture in reducing false negatives for toxic mushrooms, thus ensuring food safety. Our research highlights the potential of QMViT for improving mushroom classification as a whole.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.