Wonderful Team: Zero-Shot Physical Task Planning with Visual LLMs

Auteurs : Zidan Wang, Rui Shen, Bradly Stadie

aka Wonderful Team

Résumé : We introduce Wonderful Team, a multi-agent Vision Large Language Model (VLLM) framework for executing high-level robotic planning in a zero-shot regime. In our context, zero-shot high-level planning means that for a novel environment, we provide a VLLM with an image of the robot's surroundings and a task description, and the VLLM outputs the sequence of actions necessary for the robot to complete the task. Unlike previous methods for high-level visual planning for robotic manipulation, our method uses VLLMs for the entire planning process, enabling a more tightly integrated loop between perception, control, and planning. As a result, Wonderful Team's performance on real-world semantic and physical planning tasks often exceeds methods that rely on separate vision systems. For example, we see an average 40% success rate improvement on VimaBench over prior methods such as NLaP, an average 30% improvement over Trajectory Generators on tasks from the Trajectory Generator paper, including drawing and wiping a plate, and an average 70% improvement over Trajectory Generators on a new set of semantic reasoning tasks including environment rearrangement with implicit linguistic constraints. We hope these results highlight the rapid improvements of VLLMs in the past year, and motivate the community to consider VLLMs as an option for some high-level robotic planning problems in the future.

Soumis à arXiv le 26 Jul. 2024

Explorez l'arbre d'article

Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel

Accédez également à nos Résumés, ou posez des questions sur cet article à notre Assistant IA.

Recherchez des articles similaires (en version bêta)

En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.