Projected Entangled Pair States with flexible geometry

Auteurs : Siddhartha Patra, Sukhbinder Singh, Román Orús

arXiv: 2407.21140v1 - DOI (cond-mat.str-el)
4 pages (main text), 7 pages (appendix), 15 figures
Licence : CC BY-NC-SA 4.0

Résumé : Projected Entangled Pair States (PEPS) are a class of quantum many-body states that generalize Matrix Product States for one-dimensional systems to higher dimensions. In recent years, PEPS have advanced understanding of strongly correlated systems, especially in two dimensions, e.g., quantum spin liquids. Typically described by tensor networks on regular lattices (e.g., square, cubic), PEPS have also been adapted for irregular graphs, however, the computational cost becomes prohibitive for dense graphs with large vertex degrees. In this paper, we present a PEPS algorithm to simulate low-energy states and dynamics defined on arbitrary, fluctuating, and densely connected graphs. We introduce a cut-off, $\kappa \in \mathbb{N}$, to constrain the vertex degree of the PEPS to a set but tunable value, which is enforced in the optimization by applying a simple edge-deletion rule, allowing the geometry of the PEPS to change and adapt dynamically to the system's correlation structure. We benchmark our flexible PEPS algorithm with simulations of classical spin glasses and quantum annealing on densely connected graphs with hundreds of spins, and also study the impact of tuning $\kappa$ when simulating a uniform quantum spin model on a regular (square) lattice. Our work opens the way to apply tensor network algorithms to arbitrary, even fluctuating, background geometries.

Soumis à arXiv le 30 Jul. 2024

Explorez l'arbre d'article

Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel

Accédez également à nos Résumés, ou posez des questions sur cet article à notre Assistant IA.

Recherchez des articles similaires (en version bêta)

En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.