Self-adaptive Multimodal Retrieval-Augmented Generation
Auteurs : Wenjia Zhai
Résumé : Traditional Retrieval-Augmented Generation (RAG) methods are limited by their reliance on a fixed number of retrieved documents, often resulting in incomplete or noisy information that undermines task performance. Although recent adaptive approaches alleviated these problems, their application in intricate and real-world multimodal tasks remains limited. To address these, we propose a new approach called Self-adaptive Multimodal Retrieval-Augmented Generation (SAM-RAG), tailored specifically for multimodal contexts. SAM-RAG not only dynamically filters relevant documents based on the input query, including image captions when needed, but also verifies the quality of both the retrieved documents and the output. Extensive experimental results show that SAM-RAG surpasses existing state-of-the-art methods in both retrieval accuracy and response generation. By further ablation experiments and effectiveness analysis, SAM-RAG maintains high recall quality while improving overall task performance in multimodal RAG task. Our codes are available at https://github.com/SAM-RAG/SAM_RAG.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.