Cryogenic Control and Readout Integrated Circuits for Solid-State Quantum Computing
Auteurs : Lingxiao Lei, Heng Huang, Pingxing Chen, Mingtang Deng
Résumé : In the pursuit of quantum computing, solid-state quantum systems, particularly superconducting ones, have made remarkable advancements over the past two decades. However, achieving fault-tolerant quantum computing for next-generation applications necessitates the integration of several million qubits, which presents significant challenges in terms of interconnection complexity and latency that are currently unsolvable with state-of-the-art room-temperature control and readout electronics. Recently, cryogenic integrated circuits (ICs), including CMOS radio-frequency ICs and rapid-single-flux-quantum-logic ICs, have emerged as potential alternatives to room-temperature electronics. Unlike their room-temperature counterparts, these ICs are deployed within cryostats to enhance scalability by reducing the number and length of transmission lines. Additionally, operating at cryogenic temperatures can suppress electronic noise and improve qubit control fidelity. However, for CMOS ICs specifically, circuit design uncertainties arise due to a lack of reliable models for cryogenic field effect transistors as well as issues related to severe fickle noises and power dissipation at cryogenic temperatures. This paper provides a comprehensive review of recent research on both types of cryogenic control and readout ICs but primarily focuses on the more mature CMOS technology. The discussion encompasses principles underlying control and readout techniques employed in cryogenic CMOS ICs along with their architectural designs; characterization and modeling approaches for field effect transistors under cryogenic conditions; as well as fundamental concepts pertaining to rapid single flux quantum circuits.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.