Observing planetary gaps in the gas of debris disks
Auteurs : C. Bergez-Casalou, Q. Kral
Résumé : Recent ALMA observations discovered consequent amounts (i.e., up to a few $10^{-1}\; \rm M_\oplus$) of CO gas in debris disks that were expected to be gas-free. This gas is in general estimated to be mostly composed of CO, C, and O (i.e., $\rm H_2$-poor), unlike the gas present in protoplanetary disks ($\rm H_2$-rich). At this stage, the majority of planet formation already occurred, and giant planets might be evolving in these disks. While planets have been directly observed in debris disks (e.g., $\beta$ Pictoris), their direct observations are challenging due to the weak luminosity of the planets. In this paper, with the help of hydrodynamical simulations (with FARGO3D) coupled with a radiative transfer code (RADMC-3D) and an observing tool (CASA), we show that planet-gas interactions can produce observable substructures in this late debris disk stage. While it is tricky to observe gaps in the CO emission of protoplanetary disks, the unique properties of the gaseous debris disks allow us to observe planetary gaps in the gas. Depending on the total mass of the gaseous debris disk, kinks can also be observed. We derive a simple criterion to estimate in which conditions gaps would be observable and apply it to the known gaseous debris disk surrounding HD138813. In our framework, we find that planets as small as $0.5 \; \rm M_J$ can produce observable gaps and investigate under which conditions (i.e., gas and planets characteristics) the substructure become observable with ALMA. The first observations of planet-gas interactions in debris disks can lead to a new way to indirectly detect exoplanets, reaching a population that could not be probed before, such as giant planets that are too cold to be detected by direct imaging.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.