Double Descent in Portfolio Optimization: Dance between Theoretical Sharpe Ratio and Estimation Accuracy

Auteurs : Yonghe Lu, Yanrong Yang, Terry Zhang

arXiv: 2411.18830v1 - DOI (q-fin.PM)
Licence : CC BY 4.0

Résumé : We study the relationship between model complexity and out-of-sample performance in the context of mean-variance portfolio optimization. Representing model complexity by the number of assets, we find that the performance of low-dimensional models initially improves with complexity but then declines due to overfitting. As model complexity becomes sufficiently high, the performance improves with complexity again, resulting in a double ascent Sharpe ratio curve similar to the double descent phenomenon observed in artificial intelligence. The underlying mechanisms involve an intricate interaction between the theoretical Sharpe ratio and estimation accuracy. In high-dimensional models, the theoretical Sharpe ratio approaches its upper limit, and the overfitting problem is reduced because there are more parameters than data restrictions, which allows us to choose well-behaved parameters based on inductive bias.

Soumis à arXiv le 28 Nov. 2024

Explorez l'arbre d'article

Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel

Accédez également à nos Résumés, ou posez des questions sur cet article à notre Assistant IA.

Recherchez des articles similaires (en version bêta)

En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.