Strings from Feynman Diagrams
Auteurs : Rajesh Gopakumar, Rishabh Kaushik, Shota Komatsu, Edward A. Mazenc, Debmalya Sarkar
Résumé : For correlators in $\mathcal{N}=4$ Super Yang-Mills preserving half the supersymmetry, we manifestly recast the gauge theory Feynman diagram expansion as a sum over dual closed strings. Each individual Feynman diagram maps on to a Riemann surface with specific moduli. The Feynman diagrams thus correspond to discrete lattice points on string moduli space, rather than discretized worldsheets. This picture is valid to all orders in the $1/N$ expansion. Concretely, the mapping is carried out at the level of a two-matrix integral with its dual string description. It provides a microscopic picture of open/closed string duality for this topological subsector of the full AdS/CFT correspondence. At the same time, the concrete mechanism for how strings emerge from the matrix model Feynman diagrams predicts that multiple open string descriptions can exist for the same dual closed string theory. By considering the insertion of determinant operators in $\mathcal{N}=4$ SYM, we indeed find six equivalent open-string descriptions. Each of them generates Feynman diagrams related to one another via (partial) graph duality, and hence encodes the same information. The embedding of these Kontsevich-like duals into the 1/2 SUSY sector of AdS/CFT is achieved by open strings on giant graviton branes.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.