Boosting Performance of Iterative Applications on GPUs: Kernel Batching with CUDA Graphs
Auteurs : Jonah Ekelund, Stefano Markidis, Ivy Peng
Résumé : Graphics Processing Units (GPUs) have become the standard in accelerating scientific applications on heterogeneous systems. However, as GPUs are getting faster, one potential performance bottleneck with GPU-accelerated applications is the overhead from launching several fine-grained kernels. CUDA Graph addresses these performance challenges by enabling a graph-based execution model that captures operations as nodes and dependence as edges in a static graph. Thereby consolidating several kernel launches into one graph launch. We propose a performance optimization strategy for iteratively launched kernels. By grouping kernel launches into iteration batches and then unrolling these batches into a CUDA Graph, iterative applications can benefit from CUDA Graph for performance boosting. We analyze the performance gain and overhead from this approach by designing a skeleton application. The skeleton application also serves as a generalized example of converting an iterative solver to CUDA Graph, and for deriving a performance model. Using the skeleton application, we show that when unrolling iteration batches for a given platform, there is an optimal size of the iteration batch, which is independent of workload, balancing the extra overhead from graph creation with the performance gain of the graph execution. Depending on workload, we show that the optimal iteration batch size gives more than 1.4x speed-up in the skeleton application. Furthermore, we show that similar speed-up can be gained in Hotspot and Hotspot3D from the Rodinia benchmark suite and a Finite-Difference Time-Domain (FDTD) Maxwell solver.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.