Climber: Toward Efficient Scaling Laws for Large Recommendation Models

Auteurs : Songpei Xu, Shijia Wang, Da Guo, Xianwen Guo, Qiang Xiao, Bin Huang, Guanlin Wu, Chuanjiang Luo

Résumé : Transformer-based generative models have achieved remarkable success across domains with various scaling law manifestations. However, our extensive experiments reveal persistent challenges when applying Transformer to recommendation systems: (1) Transformer scaling is not ideal with increased computational resources, due to structural incompatibilities with recommendation-specific features such as multi-source data heterogeneity; (2) critical online inference latency constraints (tens of milliseconds) that intensify with longer user behavior sequences and growing computational demands. We propose Climber, an efficient recommendation framework comprising two synergistic components: the model architecture for efficient scaling and the co-designed acceleration techniques. Our proposed model adopts two core innovations: (1) multi-scale sequence extraction that achieves a time complexity reduction by a constant factor, enabling more efficient scaling with sequence length; (2) dynamic temperature modulation adapting attention distributions to the multi-scenario and multi-behavior patterns. Complemented by acceleration techniques, Climber achieves a 5.15$\times$ throughput gain without performance degradation by adopting a "single user, multiple item" batched processing and memory-efficient Key-Value caching. Comprehensive offline experiments on multiple datasets validate that Climber exhibits a more ideal scaling curve. To our knowledge, this is the first publicly documented framework where controlled model scaling drives continuous online metric growth (12.19\% overall lift) without prohibitive resource costs. Climber has been successfully deployed on Netease Cloud Music, one of China's largest music streaming platforms, serving tens of millions of users daily.

Soumis à arXiv le 14 Fév. 2025

Explorez l'arbre d'article

Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel

Accédez également à nos Résumés, ou posez des questions sur cet article à notre Assistant IA.

Recherchez des articles similaires (en version bêta)

En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.