Chain-of-Rank: Enhancing Large Language Models for Domain-Specific RAG in Edge Device
Auteurs : Juntae Lee, Jihwan Bang, Seunghan Yang, Kyuhong Shim, Simyung Chang
Résumé : Retrieval-augmented generation (RAG) with large language models (LLMs) is especially valuable in specialized domains, where precision is critical. To more specialize the LLMs into a target domain, domain-specific RAG has recently been developed by allowing the LLM to access the target domain early via finetuning. The domain-specific RAG makes more sense in resource-constrained environments like edge devices, as they should perform a specific task (e.g. personalization) reliably using only small-scale LLMs. While the domain-specific RAG is well-aligned with edge devices in this respect, it often relies on widely-used reasoning techniques like chain-of-thought (CoT). The reasoning step is useful to understand the given external knowledge, and yet it is computationally expensive and difficult for small-scale LLMs to learn it. Tackling this, we propose the Chain of Rank (CoR) which shifts the focus from intricate lengthy reasoning to simple ranking of the reliability of input external documents. Then, CoR reduces computational complexity while maintaining high accuracy, making it particularly suited for resource-constrained environments. We attain the state-of-the-art (SOTA) results in benchmarks, and analyze its efficacy.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.