Connecting the geometry and dynamics of many-body complex systems with message passing neural operators
Auteurs : Nicholas A. Gabriel, Neil F. Johnson, George Em Karniadakis
Résumé : The relationship between scale transformations and dynamics established by renormalization group techniques is a cornerstone of modern physical theories, from fluid mechanics to elementary particle physics. Integrating renormalization group methods into neural operators for many-body complex systems could provide a foundational inductive bias for learning their effective dynamics, while also uncovering multiscale organization. We introduce a scalable AI framework, ROMA (Renormalized Operators with Multiscale Attention), for learning multiscale evolution operators of many-body complex systems. In particular, we develop a renormalization procedure based on neural analogs of the geometric and laplacian renormalization groups, which can be co-learned with neural operators. An attention mechanism is used to model multiscale interactions by connecting geometric representations of local subgraphs and dynamical operators. We apply this framework in challenging conditions: large systems of more than 1M nodes, long-range interactions, and noisy input-output data for two contrasting examples: Kuramoto oscillators and Burgers-like social dynamics. We demonstrate that the ROMA framework improves scalability and positive transfer between forecasting and effective dynamics tasks compared to state-of-the-art operator learning techniques, while also giving insight into multiscale interactions. Additionally, we investigate power law scaling in the number of model parameters, and demonstrate a departure from typical power law exponents in the presence of hierarchical and multiscale interactions.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.