Linear Representations of Political Perspective Emerge in Large Language Models
Auteurs : Junsol Kim, James Evans, Aaron Schein
Résumé : Large language models (LLMs) have demonstrated the ability to generate text that realistically reflects a range of different subjective human perspectives. This paper studies how LLMs are seemingly able to reflect more liberal versus more conservative viewpoints among other political perspectives in American politics. We show that LLMs possess linear representations of political perspectives within activation space, wherein more similar perspectives are represented closer together. To do so, we probe the attention heads across the layers of three open transformer-based LLMs (Llama-2-7b-chat, Mistral-7b-instruct, Vicuna-7b). We first prompt models to generate text from the perspectives of different U.S. lawmakers. We then identify sets of attention heads whose activations linearly predict those lawmakers' DW-NOMINATE scores, a widely-used and validated measure of political ideology. We find that highly predictive heads are primarily located in the middle layers, often speculated to encode high-level concepts and tasks. Using probes only trained to predict lawmakers' ideology, we then show that the same probes can predict measures of news outlets' slant from the activations of models prompted to simulate text from those news outlets. These linear probes allow us to visualize, interpret, and monitor ideological stances implicitly adopted by an LLM as it generates open-ended responses. Finally, we demonstrate that by applying linear interventions to these attention heads, we can steer the model outputs toward a more liberal or conservative stance. Overall, our research suggests that LLMs possess a high-level linear representation of American political ideology and that by leveraging recent advances in mechanistic interpretability, we can identify, monitor, and steer the subjective perspective underlying generated text.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.