iManip: Skill-Incremental Learning for Robotic Manipulation
Auteurs : Zexin Zheng, Jia-Feng Cai, Xiao-Ming Wu, Yi-Lin Wei, Yu-Ming Tang, Wei-Shi Zheng
Résumé : The development of a generalist agent with adaptive multiple manipulation skills has been a long-standing goal in the robotics community. In this paper, we explore a crucial task, skill-incremental learning, in robotic manipulation, which is to endow the robots with the ability to learn new manipulation skills based on the previous learned knowledge without re-training. First, we build a skill-incremental environment based on the RLBench benchmark, and explore how traditional incremental methods perform in this setting. We find that they suffer from severe catastrophic forgetting due to the previous methods on classification overlooking the characteristics of temporality and action complexity in robotic manipulation tasks. Towards this end, we propose an incremental Manip}ulation framework, termed iManip, to mitigate the above issues. We firstly design a temporal replay strategy to maintain the integrity of old skills when learning new skill. Moreover, we propose the extendable PerceiverIO, consisting of an action prompt with extendable weight to adapt to new action primitives in new skill. Extensive experiments show that our framework performs well in Skill-Incremental Learning. Codes of the skill-incremental environment with our framework will be open-source.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.