Critical Thinking: Which Kinds of Complexity Govern Optimal Reasoning Length?

Auteurs : Celine Lee, Alexander M. Rush, Keyon Vafa

Licence : CC BY 4.0

Résumé : Large language models (LLMs) often benefit from verbalized reasoning at inference time, but it remains unclear which aspects of task difficulty these extra reasoning tokens address. To investigate this question, we formalize a framework using deterministic finite automata (DFAs). DFAs offer a formalism through which we can characterize task complexity through measurable properties such as run length (number of reasoning steps required) and state-space size (decision complexity). We first show that across different tasks and models of different sizes and training paradigms, there exists an optimal amount of reasoning tokens such that the probability of producing a correct solution is maximized. We then investigate which properties of complexity govern this critical length: we find that task instances with longer corresponding underlying DFA runs (i.e. demand greater latent state-tracking requirements) correlate with longer reasoning lengths, but, surprisingly, that DFA size (i.e. state-space complexity) does not. We then demonstrate an implication of these findings: being able to predict the optimal number of reasoning tokens for new problems and filtering out non-optimal length answers results in consistent accuracy improvements.

Soumis à arXiv le 02 Avr. 2025

Explorez l'arbre d'article

Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel

Accédez également à nos Résumés, ou posez des questions sur cet article à notre Assistant IA.

Recherchez des articles similaires (en version bêta)

En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.