A Physics-Informed Meta-Learning Framework for the Continuous Solution of Parametric PDEs on Arbitrary Geometries

Auteurs : Reza Najian Asl, Yusuke Yamazaki, Kianoosh Taghikhani, Mayu Muramatsu, Markus Apel, Shahed Rezaei

Licence : CC BY-NC-ND 4.0

Résumé : In this work, we introduce implicit Finite Operator Learning (iFOL) for the continuous and parametric solution of partial differential equations (PDEs) on arbitrary geometries. We propose a physics-informed encoder-decoder network to establish the mapping between continuous parameter and solution spaces. The decoder constructs the parametric solution field by leveraging an implicit neural field network conditioned on a latent or feature code. Instance-specific codes are derived through a PDE encoding process based on the second-order meta-learning technique. In training and inference, a physics-informed loss function is minimized during the PDE encoding and decoding. iFOL expresses the loss function in an energy or weighted residual form and evaluates it using discrete residuals derived from standard numerical PDE methods. This approach results in the backpropagation of discrete residuals during both training and inference. iFOL features several key properties: (1) its unique loss formulation eliminates the need for the conventional encode-process-decode pipeline previously used in operator learning with conditional neural fields for PDEs; (2) it not only provides accurate parametric and continuous fields but also delivers solution-to-parameter gradients without requiring additional loss terms or sensitivity analysis; (3) it can effectively capture sharp discontinuities in the solution; and (4) it removes constraints on the geometry and mesh, making it applicable to arbitrary geometries and spatial sampling (zero-shot super-resolution capability). We critically assess these features and analyze the network's ability to generalize to unseen samples across both stationary and transient PDEs. The overall performance of the proposed method is promising, demonstrating its applicability to a range of challenging problems in computational mechanics.

Soumis à arXiv le 03 Avr. 2025

Explorez l'arbre d'article

Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel

Accédez également à nos Résumés, ou posez des questions sur cet article à notre Assistant IA.

Recherchez des articles similaires (en version bêta)

En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.