Techno-economic environmental and social assessment framework for energy transition pathways in integrated energy communities: a case study in Alaska
Auteurs : Jayashree Yadav, Ingemar Mathiasson, Bindu Panikkar, Mads Almassalkhi
Résumé : The transition to low-carbon energy systems demands comprehensive evaluation tools that account for technical, economic, environmental, and social dimensions. While numerous studies address specific aspects of energy transition, few provide an integrated framework that captures the full spectrum of impacts. This study proposes a comprehensive techno-economic, environmental, and social (TEES) assessment framework to evaluate energy transition pathways. The framework provides a structured methodology for assessing infrastructure needs, cost implications, emissions reductions, and social equity impacts, offering a systematic approach for informed decision-making. To illustrate its applicability, a detailed case study of a remote community in Alaska is conducted, evaluating the TEES impacts of three distinct energy transition pathways including heat pumps (HPs) and battery integration, resource coordination and expanded community solar photovoltaic (PV). Findings show that coordination of HPs minimizes peak demand, enhances grid reliability, and reduces energy burdens among low-income households. Extensive simulation-based analysis reveals that strategically staging electric HPs with existing oil heating systems can lower overall energy costs by 19% and reduce emissions by 29% compared to the today's system and outperforms all-heat-pump strategy for economic savings. By combining a generalizable, community-centric assessment framework with data-driven case study insights, this work offers a practical tool for utilities, community stakeholders and policymakers to work toward equitable and sustainable energy transitions.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.