Exploring the Performance of Perforated Backpropagation through Further Experiments

Auteurs : Rorry Brenner, Evan Davis, Rushi Chaudhari, Rowan Morse, Jingyao Chen, Xirui Liu, Zhaoyi You, Laurent Itti

10 pages, 7 figures, 1 table
Licence : CC BY-NC-ND 4.0

Résumé : Perforated Backpropagation is a neural network optimization technique based on modern understanding of the computational importance of dendrites within biological neurons. This paper explores further experiments from the original publication, generated from a hackathon held at the Carnegie Mellon Swartz Center in February 2025. Students and local Pittsburgh ML practitioners were brought together to experiment with the Perforated Backpropagation algorithm on the datasets and models which they were using for their projects. Results showed that the system could enhance their projects, with up to 90% model compression without negative impact on accuracy, or up to 16% increased accuracy of their original models.

Soumis à arXiv le 31 Mai. 2025

Explorez l'arbre d'article

Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel

Accédez également à nos Résumés, ou posez des questions sur cet article à notre Assistant IA.

Recherchez des articles similaires (en version bêta)

En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.