Echoes of AI: Investigating the Downstream Effects of AI Assistants on Software Maintainability

Auteurs : Markus Borg, Dave Hewett, Nadim Hagatulah, Noric Couderc, Emma Söderberg, Donald Graham, Uttam Kini, Dave Farley

Preprint of study preregistered at ICSME 2025 with In-Principal Acceptance. https://conf.researchr.org/track/icsme-2024/icsme-2024-registered-reports-track

Résumé : [Context] AI assistants, like GitHub Copilot and Cursor, are transforming software engineering. While several studies highlight productivity improvements, their impact on maintainability requires further investigation. [Objective] This study investigates whether co-development with AI assistants affects software maintainability, specifically how easily other developers can evolve the resulting source code. [Method] We conducted a two-phase controlled experiment involving 151 participants, 95% of whom were professional developers. In Phase 1, participants added a new feature to a Java web application, with or without AI assistance. In Phase 2, a randomized controlled trial, new participants evolved these solutions without AI assistance. [Results] Phase 2 revealed no significant differences in subsequent evolution with respect to completion time or code quality. Bayesian analysis suggests that any speed or quality improvements from AI use were at most small and highly uncertain. Observational results from Phase 1 corroborate prior research: using an AI assistant yielded a 30.7% median reduction in completion time, and habitual AI users showed an estimated 55.9% speedup. [Conclusions] Overall, we did not detect systematic maintainability advantages or disadvantages when other developers evolved code co-developed with AI assistants. Within the scope of our tasks and measures, we observed no consistent warning signs of degraded code-level maintainability. Future work should examine risks such as code bloat from excessive code generation and cognitive debt as developers offload more mental effort to assistants.

Soumis à arXiv le 01 Jul. 2025

Explorez l'arbre d'article

Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel

Accédez également à nos Résumés, ou posez des questions sur cet article à notre Assistant IA.

Recherchez des articles similaires (en version bêta)

En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.