AI Agents and Agentic AI-Navigating a Plethora of Concepts for Future Manufacturing
Auteurs : Yinwang Ren, Yangyang Liu, Tang Ji, Xun Xu
Résumé : AI agents are autonomous systems designed to perceive, reason, and act within dynamic environments. With the rapid advancements in generative AI (GenAI), large language models (LLMs) and multimodal large language models (MLLMs) have significantly improved AI agents' capabilities in semantic comprehension, complex reasoning, and autonomous decision-making. At the same time, the rise of Agentic AI highlights adaptability and goal-directed autonomy in dynamic and complex environments. LLMs-based AI Agents (LLM-Agents), MLLMs-based AI Agents (MLLM-Agents), and Agentic AI contribute to expanding AI's capabilities in information processing, environmental perception, and autonomous decision-making, opening new avenues for smart manufacturing. However, the definitions, capability boundaries, and practical applications of these emerging AI paradigms in smart manufacturing remain unclear. To address this gap, this study systematically reviews the evolution of AI and AI agent technologies, examines the core concepts and technological advancements of LLM-Agents, MLLM-Agents, and Agentic AI, and explores their potential applications in and integration into manufacturing, along with the potential challenges they may face.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.