DiffVolume: Diffusion Models for Volume Generation in Limit Order Books
Auteurs : Zhuohan Wang, Carmine Ventre
Résumé : Modeling limit order books (LOBs) dynamics is a fundamental problem in market microstructure research. In particular, generating high-dimensional volume snapshots with strong temporal and liquidity-dependent patterns remains a challenging task, despite recent work exploring the application of Generative Adversarial Networks to LOBs. In this work, we propose a conditional \textbf{Diff}usion model for the generation of future LOB \textbf{Volume} snapshots (\textbf{DiffVolume}). We evaluate our model across three axes: (1) \textit{Realism}, where we show that DiffVolume, conditioned on past volume history and time of day, better reproduces statistical properties such as marginal distribution, spatial correlation, and autocorrelation decay; (2) \textit{Counterfactual generation}, allowing for controllable generation under hypothetical liquidity scenarios by additionally conditioning on a target future liquidity profile; and (3) \textit{Downstream prediction}, where we show that the synthetic counterfactual data from our model improves the performance of future liquidity forecasting models. Together, these results suggest that DiffVolume provides a powerful and flexible framework for realistic and controllable LOB volume generation.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.