HierOctFusion: Multi-scale Octree-based 3D Shape Generation via Part-Whole-Hierarchy Message Passing

Auteurs : Xinjie Gao, Bi'an Du, Wei Hu

Résumé : 3D content generation remains a fundamental yet challenging task due to the inherent structural complexity of 3D data. While recent octree-based diffusion models offer a promising balance between efficiency and quality through hierarchical generation, they often overlook two key insights: 1) existing methods typically model 3D objects as holistic entities, ignoring their semantic part hierarchies and limiting generalization; and 2) holistic high-resolution modeling is computationally expensive, whereas real-world objects are inherently sparse and hierarchical, making them well-suited for layered generation. Motivated by these observations, we propose HierOctFusion, a part-aware multi-scale octree diffusion model that enhances hierarchical feature interaction for generating fine-grained and sparse object structures. Furthermore, we introduce a cross-attention conditioning mechanism that injects part-level information into the generation process, enabling semantic features to propagate effectively across hierarchical levels from parts to the whole. Additionally, we construct a 3D dataset with part category annotations using a pre-trained segmentation model to facilitate training and evaluation. Experiments demonstrate that HierOctFusion achieves superior shape quality and efficiency compared to prior methods.

Soumis à arXiv le 14 Aoû. 2025

Explorez l'arbre d'article

Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel

Accédez également à nos Résumés, ou posez des questions sur cet article à notre Assistant IA.

Recherchez des articles similaires (en version bêta)

En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.