Governable AI: Provable Safety Under Extreme Threat Models

Auteurs : Donglin Wang, Weiyun Liang, Chunyuan Chen, Jing Xu, Yulong Fu

Résumé : As AI rapidly advances, the security risks posed by AI are becoming increasingly severe, especially in critical scenarios, including those posing existential risks. If AI becomes uncontrollable, manipulated, or actively evades safety mechanisms, it could trigger systemic disasters. Existing AI safety approaches-such as model enhancement, value alignment, and human intervention-suffer from fundamental, in-principle limitations when facing AI with extreme motivations and unlimited intelligence, and cannot guarantee security. To address this challenge, we propose a Governable AI (GAI) framework that shifts from traditional internal constraints to externally enforced structural compliance based on cryptographic mechanisms that are computationally infeasible to break, even for future AI, under the defined threat model and well-established cryptographic assumptions.The GAI framework is composed of a simple yet reliable, fully deterministic, powerful, flexible, and general-purpose rule enforcement module (REM); governance rules; and a governable secure super-platform (GSSP) that offers end-to-end protection against compromise or subversion by AI. The decoupling of the governance rules and the technical platform further enables a feasible and generalizable technical pathway for the safety governance of AI. REM enforces the bottom line defined by governance rules, while GSSP ensures non-bypassability, tamper-resistance, and unforgeability to eliminate all identified attack vectors. This paper also presents a rigorous formal proof of the security properties of this mechanism and demonstrates its effectiveness through a prototype implementation evaluated in representative high-stakes scenarios.

Soumis à arXiv le 28 Aoû. 2025

Explorez l'arbre d'article

Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel

Accédez également à nos Résumés, ou posez des questions sur cet article à notre Assistant IA.

Recherchez des articles similaires (en version bêta)

En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.