Ultra Strong Machine Learning: Teaching Humans Active Learning Strategies via Automated AI Explanations

Auteurs : Lun Ai, Johannes Langer, Ute Schmid, Stephen Muggleton

Licence : CC BY 4.0

Résumé : Ultra Strong Machine Learning (USML) refers to symbolic learning systems that not only improve their own performance but can also teach their acquired knowledge to quantifiably improve human performance. In this work, we present LENS (Logic Programming Explanation via Neural Summarisation), a neuro-symbolic method that combines symbolic program synthesis with large language models (LLMs) to automate the explanation of machine-learned logic programs in natural language. LENS addresses a key limitation of prior USML approaches by replacing hand-crafted explanation templates with scalable automated generation. Through systematic evaluation using multiple LLM judges and human validation, we demonstrate that LENS generates superior explanations compared to direct LLM prompting and hand-crafted templates. To investigate whether LENS can teach transferable active learning strategies, we carried out a human learning experiment across three related domains. Our results show no significant human performance improvements, suggesting that comprehensive LLM responses may overwhelm users for simpler problems rather than providing learning support. Our work provides a solid foundation for building effective USML systems to support human learning. The source code is available on: https://github.com/lun-ai/LENS.git.

Soumis à arXiv le 31 Aoû. 2025

Explorez l'arbre d'article

Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel

Accédez également à nos Résumés, ou posez des questions sur cet article à notre Assistant IA.

Recherchez des articles similaires (en version bêta)

En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.