Graph-Guided Concept Selection for Efficient Retrieval-Augmented Generation
Auteurs : Ziyu Liu, Yijing Liu, Jianfei Yuan, Minzhi Yan, Le Yue, Honghui Xiong, Yi Yang
Résumé : Graph-based RAG constructs a knowledge graph (KG) from text chunks to enhance retrieval in Large Language Model (LLM)-based question answering. It is especially beneficial in domains such as biomedicine, law, and political science, where effective retrieval often involves multi-hop reasoning over proprietary documents. However, these methods demand numerous LLM calls to extract entities and relations from text chunks, incurring prohibitive costs at scale. Through a carefully designed ablation study, we observe that certain words (termed concepts) and their associated documents are more important. Based on this insight, we propose Graph-Guided Concept Selection (G2ConS). Its core comprises a chunk selection method and an LLM-independent concept graph. The former selects salient document chunks to reduce KG construction costs; the latter closes knowledge gaps introduced by chunk selection at zero cost. Evaluations on multiple real-world datasets show that G2ConS outperforms all baselines in construction cost, retrieval effectiveness, and answering quality.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.