Alpamayo-R1: Bridging Reasoning and Action Prediction for Generalizable Autonomous Driving in the Long Tail
Auteurs : NVIDIA, :, Yan Wang, Wenjie Luo, Junjie Bai, Yulong Cao, Tong Che, Ke Chen, Yuxiao Chen, Jenna Diamond, Yifan Ding, Wenhao Ding, Liang Feng, Greg Heinrich, Jack Huang, Peter Karkus, Boyi Li, Pinyi Li, Tsung-Yi Lin, Dongran Liu, Ming-Yu Liu, Langechuan Liu, Zhijian Liu, Jason Lu, Yunxiang Mao, Pavlo Molchanov, Lindsey Pavao, Zhenghao Peng, Mike Ranzinger, Ed Schmerling, Shida Shen, Yunfei Shi, Sarah Tariq, Ran Tian, Tilman Wekel, Xinshuo Weng, Tianjun Xiao, Eric Yang, Xiaodong Yang, Yurong You, Xiaohui Zeng, Wenyuan Zhang, Boris Ivanovic, Marco Pavone
Résumé : End-to-end architectures trained via imitation learning have advanced autonomous driving by scaling model size and data, yet performance remains brittle in safety-critical long-tail scenarios where supervision is sparse and causal understanding is limited. To address this, we introduce Alpamayo-R1 (AR1), a vision-language-action model (VLA) that integrates Chain of Causation reasoning with trajectory planning to enhance decision-making in complex driving scenarios. Our approach features three key innovations: (1) the Chain of Causation (CoC) dataset, built through a hybrid auto-labeling and human-in-the-loop pipeline producing decision-grounded, causally linked reasoning traces aligned with driving behaviors; (2) a modular VLA architecture combining Cosmos-Reason, a Vision-Language Model pre-trained for Physical AI applications, with a diffusion-based trajectory decoder that generates dynamically feasible plans in real time; (3) a multi-stage training strategy using supervised fine-tuning to elicit reasoning and reinforcement learning (RL) to optimize reasoning quality via large reasoning model feedback and enforce reasoning-action consistency. Evaluation shows AR1 achieves up to a 12% improvement in planning accuracy on challenging cases compared to a trajectory-only baseline, with a 35% reduction in off-road rate and 25% reduction in close encounter rate in closed-loop simulation. RL post-training improves reasoning quality by 45% as measured by a large reasoning model critic and reasoning-action consistency by 37%. Model scaling from 0.5B to 7B parameters shows consistent improvements. On-vehicle road tests confirm real-time performance (99 ms latency) and successful urban deployment. By bridging interpretable reasoning with precise control, AR1 demonstrates a practical path towards Level 4 autonomous driving. We plan to release AR1 models and a subset of the CoC in a future update.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.