Tool-RoCo: An Agent-as-Tool Self-organization Large Language Model Benchmark in Multi-robot Cooperation
Auteurs : Ke Zhang, Xiaoning Zhao, Ce Zheng, Jiahong Ning, Dandan Zhu, Wenqi Zhang, Chen Sun, Toshiharu Sugawara
Résumé : This study proposes Tool-RoCo, a novel benchmark for evaluating large language models (LLMs) in long-term multi-agent cooperation based on RoCo, a multi-robot cooperative benchmark. Recent research on LLM-based multi-agent systems has relied on predefined orchestration, while ignoring agent autonomy. Tool-RoCo treats other agents as tools and introduces cooperative tools, leveraging tool usage to evaluate multi-agent cooperation and self-organization. Tool usage means that each agent (LLM) selects a tool from a candidate set based on the current state, receives feedback, and adjusts its selection in subsequent rounds. To evaluate different autonomy levels, we propose four LLM paradigms: (1) centralized cooperation, where a single LLM allocates tools to all agents; (2) centralized self-organization, where a central LLM autonomously activates agents while keeping others inactive; (3) decentralized cooperation, where each agent has its own LLM and calls tools based on local information; and (4) self-organization, where a randomly chosen initial agent can request collaboration, activating additional agents via tool calls. Tool-RoCo includes three multi-robot tasks, SORT, PACK, and CABINET, to measure format and parameter accuracy and agent coordination through tool usage. The results using several LLMs showed that cooperative tools accounted for only 7.09% of all tools, indicating that LLM-based agents rarely invoked others as assistants. Moreover, activation tools accounted for 96.42%, suggesting that current LLMs tend to maintain active agents while seldom deactivating them for adaptive coordination. Tool-RoCo provides a systematic benchmark to evaluate LLM autonomy and cooperation in multi-agent tasks. Code and Demo: https://github.com/ColaZhang22/Tool-Roco
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.