A Discrete Fourier Kernel and Fraenkel's Tiling Conjecture
Auteurs : Ron Graham, Kevin O'Bryant
Résumé : The set B_{p,r}^q:=\{\floor{nq/p+r} \colon n\in Z \} with integers p, q, r) is a Beatty set with density p/q. We derive a formula for the Fourier transform \hat{B_{p,r}^q}(j):=\sum_{n=1}^p e^{-2 \pi i j \floor{nq/p+r} / q}. A. S. Fraenkel conjectured that there is essentially one way to partition the integers into m>2 Beatty sets with distinct densities. We conjecture a generalization of this, and use Fourier methods to prove several special cases of our generalized conjecture.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.