Decision-Making Under Uncertainty in Research Synthesis: Designing for the Garden of Forking Paths

Authors: Alex Kale, Matthew Kay, Jessica Hullman

This paper will be published in Proceedings of CHI Conference on HumanFactors in Computing Systems Proceedings (CHI 2019). Expected DOI: https://doi.org/10.1145/3290605.3300432 Updates posted on 01/14/2019 in order to clarify limitations of framing researcher decision-making as expected utility maximization

Abstract: To make evidence-based recommendations to decision-makers, researchers conducting systematic reviews and meta-analyses must navigate a garden of forking paths: a series of analytical decision-points, each of which has the potential to influence findings. To identify challenges and opportunities related to designing systems to help researchers manage uncertainty around which of multiple analyses is best, we interviewed 11 professional researchers who conduct research synthesis to inform decision-making within three organizations. We conducted a qualitative analysis identifying 480 analytical decisions made by researchers throughout the scientific process. We present descriptions of current practices in applied research synthesis and corresponding design challenges: making it more feasible for researchers to try and compare analyses, shifting researchers' attention from rationales for decisions to impacts on results, and supporting communication techniques that acknowledge decision-makers' aversions to uncertainty. We identify opportunities to design systems which help researchers explore, reason about, and communicate uncertainty in decision-making about possible analyses in research synthesis.

Submitted to arXiv on 09 Jan. 2019

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.