Clusters Have Edges: The Projected Phase SpaceStructure of SDSS redMaPPer Clusters

Authors: Paxton Tomooka, Eduardo Rozo, Erika L. Wagoner, Han Aung, Daisuke Nagai, Sasha Safonova

arXiv: 2003.11555v1 - DOI (astro-ph.CO)
10 pages, 5 figures, submitted to MNRAS, companion paper to Aung et al. 2020

Abstract: We study the distribution of line-of-sight velocities of galaxies in the vicinity of SDSS redMaPPer galaxy clusters. Based on their velocities, galaxies can be split into two categories: galaxies that are dynamically associated with the cluster, and random line-of-sight projections. Both the fraction of galaxies associated with the galaxy clusters, and the velocity dispersion of the same, exhibit a sharp feature as a function of radius. The feature occurs at a radial scale $R_{\rm edge} \approx 2.2R_{\rm{\lambda}}$, where $R_{\rm{\lambda}}$ is the cluster radius assigned by redMaPPer. We refer to $R_{\rm edge}$ as the "edge radius." These results are naturally explained by a model that further splits the galaxies dynamically associated with a galaxy cluster into a component of galaxies orbiting the halo and an infalling galaxy component. The edge radius $R_{\rm edge}$ constitutes a true "cluster edge", in the sense that no orbiting structures exist past this radius. A companion paper (Aung et al. 2020) tests whether the "halo edge" hypothesis holds when investigating the full three-dimensional phase space distribution of dark matter substructures in numerical simulations, and demonstrates that this radius coincides with a suitably defined splashback radius.

Submitted to arXiv on 25 Mar. 2020

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.