Mobile Robot Path Planning in Dynamic Environments: A Survey

Authors: Kuanqi Cai (Fellow, IEEE), Chaoqun Wang (Fellow, IEEE), Jiyu Cheng (Fellow, IEEE), Clarence W De Silva (Fellow, IEEE), Max Q. -H. Meng (Fellow, IEEE)

Instrumentation,2019,6(02):90-100

Abstract: There are many challenges for robot navigation in densely populated dynamic environments. This paper presents a survey of the path planning methods for robot navigation in dense environments. Particularly, the path planning in the navigation framework of mobile robots is composed of global path planning and local path planning, with regard to the planning scope and the executability. Within this framework, the recent progress of the path planning methods is presented in the paper, while examining their strengths and weaknesses. Notably, the recently developed Velocity Obstacle method and its variants that serve as the local planner are analyzed comprehensively. Moreover, as a model-free method that is widely used in current robot applications, the reinforcement learning-based path planning algorithms are detailed in this paper.

Submitted to arXiv on 25 Jun. 2020

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.