The Dynamics of Faculty Hiring Networks

Authors: Eun Lee, Aaron Clauset, Daniel B. Larremore

EPJ Data Science 10, 48 (2021)
arXiv: 2105.02949v1 - DOI (physics.soc-ph)

Abstract: Faculty hiring networks-who hires whose graduates as faculty-exhibit steep hierarchies, which can reinforce both social and epistemic inequalities in academia. Understanding the mechanisms driving these patterns would inform efforts to diversify the academy and shed new light on the role of hiring in shaping which scientific discoveries are made. Here, we investigate the degree to which structural mechanisms can explain hierarchy and other network characteristics observed in empirical faculty hiring networks. We study a family of adaptive rewiring network models, which reinforce institutional prestige within the hierarchy in five distinct ways. Each mechanism determines the probability that a new hire comes from a particular institution according to that institution's prestige score, which is inferred from the hiring network's existing structure. We find that structural inequalities and centrality patterns in real hiring networks are best reproduced by a mechanism of global placement power, in which a new hire is drawn from a particular institution in proportion to the number of previously drawn hires anywhere. On the other hand, network measures of biased visibility are better recapitulated by a mechanism of local placement power, in which a new hire is drawn from a particular institution in proportion to the number of its previous hires already present at the hiring institution. These contrasting results suggest that the underlying structural mechanism reinforcing hierarchies in faculty hiring networks is a mixture of global and local preference for institutional prestige. Under these dynamics, we show that each institution's position in the hierarchy is remarkably stable, due to a dynamic competition that overwhelmingly favors more prestigious institutions.

Submitted to arXiv on 06 May. 2021

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.