Machine Learning for Malware Evolution Detection
Authors: Lolitha Sresta Tupadha, Mark Stamp
Abstract: Malware evolves over time and antivirus must adapt to such evolution. Hence, it is critical to detect those points in time where malware has evolved so that appropriate countermeasures can be undertaken. In this research, we perform a variety of experiments on a significant number of malware families to determine when malware evolution is likely to have occurred. All of the evolution detection techniques that we consider are based on machine learning and can be fully automated -- in particular, no reverse engineering or other labor-intensive manual analysis is required. Specifically, we consider analysis based on hidden Markov models (HMM) and the word embedding techniques HMM2Vec and Word2Vec.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.