Fabrication of Fiber-Reinforced Polymer Ceramic Composites by Wet Electrospinning

Authors: Yunzhi Xu, Junior Ndayikengurukiye, Ange-Therese Akono, Ping Guo

arXiv: 2110.08204v1 - DOI (cond-mat.soft)
Manufacturing Letters (2021)
License: CC BY-NC-SA 4.0

Abstract: We propose a novel approach of wet electrospinning to yield fiber-reinforced polymer ceramic composites, where a reactive ceramic precursor gel is used as a collector. We illustrate our approach by generating polyethylene oxide (PEO) fibers in a potassium silicate gel; the gel is later activated using metakaolin to yield a ceramic-0.5 wt% PEO fiber composite. An increase of 29% and 22% is recorded for the fabricated polymer ceramic composites in terms of indentation modulus and indentation hardness respectively. Our initial findings demonstrate the process viability and might lead to a potentially scalable manufacturing approach for fiber-reinforced polymer ceramic composites.

Submitted to arXiv on 15 Oct. 2021

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.