Towards Loosely-Coupling Knowledge Graph Embeddings and Ontology-based Reasoning
Authors: Zoi Kaoudi, Abelardo Carlos Martinez Lorenzo, Volker Markl
Abstract: Knowledge graph completion (a.k.a.~link prediction), i.e.,~the task of inferring missing information from knowledge graphs, is a widely used task in many applications, such as product recommendation and question answering. The state-of-the-art approaches of knowledge graph embeddings and/or rule mining and reasoning are data-driven and, thus, solely based on the information the input knowledge graph contains. This leads to unsatisfactory prediction results which make such solutions inapplicable to crucial domains such as healthcare. To further enhance the accuracy of knowledge graph completion we propose to loosely-couple the data-driven power of knowledge graph embeddings with domain-specific reasoning stemming from experts or entailment regimes (e.g., OWL2). In this way, we not only enhance the prediction accuracy with domain knowledge that may not be included in the input knowledge graph but also allow users to plugin their own knowledge graph embedding and reasoning method. Our initial results show that we enhance the MRR accuracy of vanilla knowledge graph embeddings by up to 3x and outperform hybrid solutions that combine knowledge graph embeddings with rule mining and reasoning up to 3.5x MRR.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.