A Better Way to Define Dark Matter Haloes

Authors: Rafael Garcia, Edgar Salazar, Eduardo Rozo, Susmita Adhikari, Han Aung, Benedikt Diemer, Daisuke Nagai, Brandon Wolfe

arXiv: 2207.11827v1 - DOI (astro-ph.CO)
16 pages, 14 figures
License: CC BY-NC-SA 4.0

Abstract: Dark matter haloes have long been recognized as one of the fundamental building blocks of large scale structure formation models. Despite their importance -- or perhaps because of it! -- halo definitions continue to evolve towards more physically motivated criteria. Here, we propose a new definition that is physically motivated, and effectively unique and parameter-free: ''A dark matter halo is comprised of the collection of particles orbiting in their own self-generated potential.'' This definition is enabled by the fact that, even with as few as $\approx 300$ particles per halo, nearly every particle in the vicinity of a halo can be uniquely classified as either orbiting or infalling based on its dynamical history. For brevity, we refer to haloes selected in this way as physical haloes. We demonstrate that: 1) the mass function of physical haloes is Press-Schechter, provided the critical threshold for collapse is allowed to vary slowly with peak height; and 2) the peak-background split prediction of the clustering amplitude of physical halos is statistically consistent with the simulation data, with an accuracy no worse than $\approx 5\%$.

Submitted to arXiv on 24 Jul. 2022

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.