The X-ray activity of F stars with hot Jupiters: KELT-24 versus WASP-18

Authors: I. Pillitteri, S. Colombo, G. Micela, S. J. Wolk

arXiv: 2304.00854v1 - DOI (astro-ph.SR)
6 pages, 7 figures, A&A accepted
License: CC BY 4.0

Abstract: X-rays emitted by the coronae of solar-type stars are a feature present in up to late-A types during the main sequence phase. F stars, either with or without hot Jupiters, are usually X-ray emitters. The very low level of X-ray emission of the F5 star WASP-18 despite its relatively young age and spectral type is thus quite peculiar. [Abridged] We observed KELT-24 with \xmm\ for a total of 43 ks in order to test if the X-ray activity of this star is depressed by the interaction with its massive hot Jupiter, as is the case of WASP-18. KELT-24 is detected in combined EPIC images with a high significance level. Its average coronal spectrum is well described by a cool component at 0.36 keV and a hotter component at 0.98 keV. We detected a flare with a duration of about 2 ks, during which the coronal temperature reached 3.5 keV. The unabsorbed quiescent flux in 0.3-8.0 keV is $\sim1.33\times10^{-13}$ erg s$^{-1}$ cm$^{-2}$, corresponding to a luminosity of $1.5\times10^{29}$ erg s$^{-1}$ at the distance of the star. The luminosity is well within the range of the typical X-ray luminosity of F stars in Hyades, which are coeval. We conclude that the activity of KELT-24 appears normal, as expected, and is not affected by any star--planet interaction. From the analysis of TESS light curves, we infer a distribution of optical flares for KELT-24 and WASP-18. Small optical flickering similar to flares is recognized in WASP-18 but at lower levels of energy and amplitude than in KELT-24. We discuss the causes of the low activity of WASP-18. Either WASP-18b could hamper the formation of a corona bright in X-rays in its host star through some form of tidal interaction, or the star has entered a minimum of activity similar to the solar Maunder minimum. This latter hypothesis would make WASP-18 among the few candidates showing such a quench of stellar activity.

Submitted to arXiv on 03 Apr. 2023

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.