A decomposition strategy for decision problems with endogenous uncertainty using mixed-integer programming

Authors: Olli Herrala, Tommi Ekholm, Fabricio Oliveira

26 pages, 10 figures
License: CC BY 4.0

Abstract: Despite methodological advances for modeling decision problems under uncertainty, faithfully representing endogenous uncertainty still proves challenging, both in terms of modeling capabilities and computational requirements. A novel framework called Decision Programming provides an approach for solving such decision problems using off-the-shelf mathematical optimization solvers. This is made possible by using influence diagrams to represent a given decision problem, which is then formulated as a mixed-integer linear programming problem. In this paper, we focus on the type of endogenous uncertainty that received less attention in the introduction of Decision Programming: conditionally observed information. Multi-stage stochastic programming (MSSP) models use conditional non-anticipativity constraints (C-NACs) to represent such uncertainties, and we show how such constraints can be incorporated into Decision Programming models. This allows us to consider the two main types of endogenous uncertainty simultaneously, namely decision-dependent information structure and decision-dependent probability distribution. Additionally, we present a decomposition approach that provides significant computational savings and also enables considering continuous decision variables in certain parts of the problem, whereas the original formulation was restricted to discrete variables only. The extended framework is illustrated with two example problems. The first considers an illustrative multiperiod game and the second is a large-scale cost-benefit problem regarding climate change mitigation. Neither of these example problems could be solved with existing frameworks.

Submitted to arXiv on 05 Apr. 2023

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.