Applying Machine Learning Analysis for Software Quality Test

Authors: Al Khan, Remudin Reshid Mekuria, Ruslan Isaev

2023 International Conference on Code Quality (ICCQ), IEEE Xplore
16 pages, 5 figures and 14 tables

Abstract: One of the biggest expense in software development is the maintenance. Therefore, it is critical to comprehend what triggers maintenance and if it may be predicted. Numerous research have demonstrated that specific methods of assessing the complexity of created programs may produce useful prediction models to ascertain the possibility of maintenance due to software failures. As a routine it is performed prior to the release, and setting up the models frequently calls for certain, object-oriented software measurements. It is not always the case that software developers have access to these measurements. In this paper, the machine learning is applied on the available data to calculate the cumulative software failure levels. A technique to forecast a software`s residual defectiveness using machine learning can be looked into as a solution to the challenge of predicting residual flaws. Software metrics and defect data were separated out of the static source code repository. Static code is used to create software metrics, and reported bugs in the repository are used to gather defect information. By using a correlation method, metrics that had no connection to the defect data were removed. This makes it possible to analyze all the data without pausing the programming process. Large, sophisticated software`s primary issue is that it is impossible to control everything manually, and the cost of an error can be quite expensive. Developers may miss errors during testing as a consequence, which will raise maintenance costs. Finding a method to accurately forecast software defects is the overall objective.

Submitted to arXiv on 16 May. 2023

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.