Provable convergence guarantees for black-box variational inference

Authors: Justin Domke, Guillaume Garrigos, Robert Gower

32 pages
License: CC BY-NC-ND 4.0

Abstract: While black-box variational inference is widely used, there is no proof that its stochastic optimization succeeds. We suggest this is due to a theoretical gap in existing stochastic optimization proofs-namely the challenge of gradient estimators with unusual noise bounds, and a composite non-smooth objective. For dense Gaussian variational families, we observe that existing gradient estimators based on reparameterization satisfy a quadratic noise bound and give novel convergence guarantees for proximal and projected stochastic gradient descent using this bound. This provides the first rigorous guarantee that black-box variational inference converges for realistic inference problems.

Submitted to arXiv on 04 Jun. 2023

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.