Design and execution of quantum circuits using tens of superconducting qubits and thousands of gates for dense Ising optimization problems
Authors: Filip B. Maciejewski, Stuart Hadfield, Benjamin Hall, Mark Hodson, Maxime Dupont, Bram Evert, James Sud, M. Sohaib Alam, Zhihui Wang, Stephen Jeffrey, Bhuvanesh Sundar, P. Aaron Lott, Shon Grabbe, Eleanor G. Rieffel, Matthew J. Reagor, Davide Venturelli
Abstract: We develop a hardware-efficient ansatz for variational optimization, derived from existing ansatze in the literature, that parametrizes subsets of all interactions in the Cost Hamiltonian in each layer. We treat gate orderings as a variational parameter and observe that doing so can provide significant performance boosts in experiments. We carried out experimental runs of a compilation-optimized implementation of fully-connected Sherrington-Kirkpatrick Hamiltonians on a 50-qubit linear-chain subsystem of Rigetti Aspen-M-3 transmon processor. Our results indicate that, for the best circuit designs tested, the average performance at optimized angles and gate orderings increases with circuit depth (using more parameters), despite the presence of a high level of noise. We report performance significantly better than using a random guess oracle for circuits involving up to approx 5000 two-qubit and approx 5000 one-qubit native gates. We additionally discuss various takeaways of our results toward more effective utilization of current and future quantum processors for optimization.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.