In-situ vs accreted Milky Way globular clusters: a new classification method and implications for cluster formation

Authors: Vasily Belokurov, Andrey Kravtsov

arXiv: 2309.15902v1 - DOI (astro-ph.GA)
Submitted to MNRAS. Comments - in particular on the individual globular clusters you think we have misclassified - are welcome!
License: CC BY 4.0

Abstract: We present a new scheme for the classification of the in-situ and accreted globular clusters (GCs). The scheme uses total energy $E$ and $z$-component of the orbital angular momentum and is calibrated using [Al/Fe] abundance ratio. We demonstrate that such classification results in the GC populations with distinct spatial, kinematic, and chemical abundance distributions. The in-situ GCs are distributed within the central 10 kpc of the Galaxy in a flattened configuration aligned with the MW disc, while the accreted GCs have a wide distribution of distances and a spatial distribution close to spherical. In-situ and accreted GCs have different $\rm [Fe/H]$ distributions with the well-known bimodality present only in the metallicity distribution of the in-situ GCs. Furthermore, the accreted and in-situ GCs are well separated in the plane of $\rm [Al/Fe]-[Mg/Fe]$ abundance ratios and follow distinct sequences in the age--$\rm [Fe/H]$ plane. The in-situ GCs in our classification show a clear disc spin-up signature -- the increase of median $V_\phi$ at metallicities $\rm [Fe/H]\approx -1.3\div -1$ similar to the spin-up in the in-situ field stars. This signature signals the MW's disc formation, which occurred $\approx 11.7-12.7$ Gyrs ago (or at $z\approx 3.1-5.3$) according to GC ages. In-situ GCs with metallicities of $\rm [Fe/H]\gtrsim -1.3$ were thus born in the Milky Way disc, while lower metallicity in-situ GCs were born during early, turbulent, pre-disc stages of the evolution of the Galaxy and are part of its Aurora stellar component.

Submitted to arXiv on 27 Sep. 2023

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.