Directions of Curvature as an Explanation for Loss of Plasticity
Authors: Alex Lewandowski, Haruto Tanaka, Dale Schuurmans, Marlos C. Machado
Abstract: Loss of plasticity is a phenomenon in which neural networks lose their ability to learn from new experience. Despite being empirically observed in several problem settings, little is understood about the mechanisms that lead to loss of plasticity. In this paper, we offer a consistent explanation for loss of plasticity: Neural networks lose directions of curvature during training and that loss of plasticity can be attributed to this reduction in curvature. To support such a claim, we provide a systematic investigation of loss of plasticity across continual learning tasks using MNIST, CIFAR-10 and ImageNet. Our findings illustrate that loss of curvature directions coincides with loss of plasticity, while also showing that previous explanations are insufficient to explain loss of plasticity in all settings. Lastly, we show that regularizers which mitigate loss of plasticity also preserve curvature, motivating a simple distributional regularizer that proves to be effective across the problem settings we considered.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.