MCS-SQL: Leveraging Multiple Prompts and Multiple-Choice Selection For Text-to-SQL Generation
Authors: Dongjun Lee, Choongwon Park, Jaehyuk Kim, Heesoo Park
Abstract: Recent advancements in large language models (LLMs) have enabled in-context learning (ICL)-based methods that significantly outperform fine-tuning approaches for text-to-SQL tasks. However, their performance is still considerably lower than that of human experts on benchmarks that include complex schemas and queries, such as BIRD. This study considers the sensitivity of LLMs to the prompts and introduces a novel approach that leverages multiple prompts to explore a broader search space for possible answers and effectively aggregate them. Specifically, we robustly refine the database schema through schema linking using multiple prompts. Thereafter, we generate various candidate SQL queries based on the refined schema and diverse prompts. Finally, the candidate queries are filtered based on their confidence scores, and the optimal query is obtained through a multiple-choice selection that is presented to the LLM. When evaluated on the BIRD and Spider benchmarks, the proposed method achieved execution accuracies of 65.5\% and 89.6\%, respectively, significantly outperforming previous ICL-based methods. Moreover, we established a new SOTA performance on the BIRD in terms of both the accuracy and efficiency of the generated queries.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.