A Systematic Evaluation of Large Language Models for Natural Language Generation Tasks
Authors: Xuanfan Ni, Piji Li
Abstract: Recent efforts have evaluated large language models (LLMs) in areas such as commonsense reasoning, mathematical reasoning, and code generation. However, to the best of our knowledge, no work has specifically investigated the performance of LLMs in natural language generation (NLG) tasks, a pivotal criterion for determining model excellence. Thus, this paper conducts a comprehensive evaluation of well-known and high-performing LLMs, namely ChatGPT, ChatGLM, T5-based models, LLaMA-based models, and Pythia-based models, in the context of NLG tasks. We select English and Chinese datasets encompassing Dialogue Generation and Text Summarization. Moreover, we propose a common evaluation setting that incorporates input templates and post-processing strategies. Our study reports both automatic results, accompanied by a detailed analysis.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.